Optimizing scoring function of dynamic programming of pairwise profile alignment using derivative free neural network

نویسنده

  • Kazunori D. Yamada
چکیده

A profile comparison method with position-specific scoring matrix (PSSM) is one of the most accurate alignment methods. Currently, cosine similarity and correlation coefficient are used as scoring functions of dynamic programming to calculate similarity between PSSMs. However, it is unclear that these functions are optimal for profile alignment methods. At least, by definition, these functions cannot capture non-linear relationships between profiles. Therefore, in this study, we attempted to discover a novel scoring function, which was more suitable for the profile comparison method than the existing ones. Firstly we implemented a new derivative free neural network by combining the conventional neural network with evolutionary strategy optimization method. Next, using the framework, the scoring function was optimized for aligning remote sequence pairs. Nepal, the pairwise profile aligner with the novel scoring function significantly improved both alignment sensitivity and precision, compared to aligners with the existing functions. Nepal improved alignment quality because of adaptation to remote sequence alignment and increasing the expressive power of similarity score. The novel scoring function can be realized using a simple matrix operation and easily incorporated into other aligners. With our scoring function, the performance of homology detection and/or multiple sequence alignment for remote homologous sequences would be further improved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extracting Dynamics Matrix of Alignment Process for a Gimbaled Inertial Navigation System Using Heuristic Dynamic Programming Method

In this paper, with the aim of estimating internal dynamics matrix of a gimbaled Inertial Navigation system (as a discrete Linear system), the discretetime Hamilton-Jacobi-Bellman (HJB) equation for optimal control has been extracted. Heuristic Dynamic Programming algorithm (HDP) for solving equation has been presented and then a neural network approximation for cost function and control input ...

متن کامل

gpALIGNER: A Fast Algorithm for Global Pairwise Alignment of DNA Sequences

Bioinformatics, through the sequencing of the full genomes for many species, is increasingly relying on efficient global alignment tools exhibiting both high sensitivity and specificity. Many computational algorithms have been applied for solving the sequence alignment problem. Dynamic programming, statistical methods, approximation and heuristic algorithms are the most common methods appli...

متن کامل

Sequence Alignment Guided By Common Motifs Described By Context Free Grammars

We introduce a new problem, context-free grammars (CFG)-guided pairwise sequence alignment, whose most immediate application is the alignment of RNA sequences that share motifs described by context-free grammars. Such motifs include common RNA secondary (sub)structures (such as stem-loops) that are recognizable in sequences. The problem aims to align given sequences by including, from a given s...

متن کامل

A DSS-Based Dynamic Programming for Finding Optimal Markets Using Neural Networks and Pricing

One of the substantial challenges in marketing efforts is determining optimal markets, specifically in market segmentation. The problem is more controversial in electronic commerce and electronic marketing. Consumer behaviour is influenced by different factors and thus varies in different time periods. These dynamic impacts lead to the uncertain behaviour of consumers and therefore harden the t...

متن کامل

Improving the performance of neural network in differentiation of breast tumors using wavelet transformation on dynamic MRI

 ABSTRACT Background: A computer aided diagnosis system was established using the wavelet transform and neural network to differentiate malignant from benign in a   group of patients with histo-pathologically proved breast lesions based on the data derived independ­ently from time-intensity profile.   Materials and Methods: The per­formance of the artificial neural network (ANN) was evaluated u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1708.09097  شماره 

صفحات  -

تاریخ انتشار 2017